#AI 模型
六國15家頂媒齊轉引:中國AI開源又好又便宜
2025年12月20日,法國最大通訊社法新社發佈報導《中國AI開源模型以高性價比悄然打入美國市場》,其中引述中國人民大學重陽金融研究院院長、全球領導力學院院長王文觀點:“中國開源模型價格低廉,甚至免費,而且效果很好”。該觀點在全球科技與政策圈廣泛傳播,美國《巴倫周刊》、新加坡《海峽時報》、法國France 24、沙烏地阿拉伯《阿拉伯新聞》、印度《今日傳播》、越南《勞動報》等六國15家頂級媒體密集轉引。以下為相關報導情況:12月20日,法新社發佈題為《中美AI競賽中,中國技術悄然打入美國市場》的報導,開篇即拋出一個震撼案例:一位美國企業家因將底層模型切換至阿里巴巴千問,實現每年節省40萬美元。文章指出中國開放模型的全球使用率已從2024年底的1.2%飆升至2025年8月的近30%。中國的主流模型以實際表現證明,開源路徑完全可以兼具高性能與低成本,從而改寫了技術選擇的遊戲規則。文章重點提及了王文的觀點:“中國的開源模型價格低廉,在某些情況下甚至是免費的,而且效果很好。”來自美國、法國、新加坡、沙烏地阿拉伯、印度、越南六國的15家核心媒體轉引這一觀點。《巴倫周刊》(Barron’s)、美國線上(AOL)、雅虎財經(Yahoo Finance)、《商業時代》(New Business Age)等面向歐美精英階層的主流財經與資訊平台迅速轉引。新加坡《海峽時報》(The Straits Times),印度《今日傳播》、《印度時報》、《歐亞時報》,法國國際新聞台(France 24),阿拉伯世界頗具影響力的《阿拉伯新聞》(Arab News)亦跟進轉載,將討論推及更廣闊的歐亞大陸。▲部分報導截圖如上這是2025年中國人民大學重陽金融研究院(人大重陽)在AI領域面向國際輿論場的又一次有力發聲。早在2025年年初,當DeepSeek在全球科技市場引發震動,人大重陽就已開始聚焦其全球影響,迅速啟動相關專題研究。2月23日,在人大重陽承辦的通州·全球發展論壇(2025年春季)“DeepSeek中國人工智慧、跳躍式發展與全球2050目標”主題研討會上,首份DeepSeek高校智庫評估報告《大跳躍:美國智庫、媒體與行業論DeepSeek中國人工智慧》(該報告論文版發佈於核心期刊《智庫理論與實踐》2025年3月第10卷第2期,作者係人大重陽院長王文、副研究員申宇婧、助理研究員金臻)一經發佈,隨即引發熱烈反響。▲2025年2月23日,通州·全球發展論壇(2025年春季)“DeepSeek中國人工智慧、跳躍式發展與全球2050目標”主題研討會在中國人民大學召開報告建議,應該客觀冷靜看待中國AI的發展階段與競爭格局,在制度建設、人才培養、企業創新等各個層面,以長期主義推動中國AI可持續發展,踐行“科技為民、科技惠民”理念,在積極參與人工智慧國際治理的同時,要守住AI發展紅線,警惕技術發展失控危機,引發40余家中外媒體轉引報導。▲報告封面如上3月1日,人大重陽宏觀研究部副主任、副研究員申宇婧在“長安街知事”微信公眾號發表文章呼籲變革AI實力評價標準,批判單純堆砌參數的“冷冰冰”路徑,力主中國“降本、增效、協同、普惠”的發展哲學,將DeepSeek的普及定義為一場深刻的社會革命。11月5日,在第八屆虹橋國際經濟論壇上,王文受邀做客央視新聞直播間,以“AI上進博,未來科技有多炸”為主題,解讀在全球科技競爭加劇的前提下,創新與合作如何雙向發力:“以人工智慧為代表的新一代工業革命,中國走在了世界最前沿,中國通過一代、兩代、三代人的不懈努力,有了科技自信的資本……而進博會提供了很好的平台,讓這些真正摸得到、感知的到、享受的到的智能產品惠及到每一個普通人。”▲部分報導截圖如上11月,王文與澳門科技大學博雅學院助理教授張夢晨在學術期刊《理論建設》2025年第6期發表論文《AI時代的全球領導力重塑:範式演化、政治哲學轉向與中國路徑》。系統闡釋了AI時代全球領導力正從“控制型”霸權向“共建型”範式演化,剖析美國“領導力赤字”,並為中國提出融合頂層設計、技術自主、數字外交與“數字命運共同體”建構的完整行動路徑。 (人大重陽)
智譜、MiniMax爭奪「大模型第一股」:高增長之下各有難題
經歷三年的軍備競賽,大模型行業迎來了資本價值兌現的關鍵節點。12月19日,北京智譜華章科技股份有限公司(下稱“智譜”)正式披露招股書,向港交所IPO發起衝擊。不到48小時,上海稀宇科技有限公司(下稱“MiniMax”)同樣向港交所披露了招股書。更早之前,這兩家AI獨角獸相繼通過了港交所聆訊。如此密集的資本動作,瞬間將“誰將是AI大模型第一股”的懸念拉滿。值得關注的是,二者雖然目標一致,但走出了截然不同的發展路徑。智譜以B端、G端服務為核心;MiniMax以C端訂閱為支柱,深耕全球化使用者市場。兩種路徑的背後,是技術理念、商業邏輯與估值邏輯的全方位碰撞。一直以來,商業化的效率之爭都是行業的比拚重點,一定程度上決定了大模型企業的估值和想像力。當大模型行業從技術探索邁入商業化深水區,這場資本市場的爭奪,更像是一場商業路徑可行性的測試。另一個變化在於,AI大模型賽道已從兩年前的群雄逐鹿,逐步聚焦到少數具備核心競爭力的頭部玩家。頭部玩家投入逐年增大,爭奪資本市場的關注與資源,就是爭奪市場話語權,也是為接下來的擴張收集彈藥。壓力和動力總是結伴而行。成功上市只是第一步,更關鍵的是後續資本故事的支撐,而這些都考驗著這兩家初出茅廬的創業公司。這場角逐的結局,遠不止誰先上市這麼簡單,它更將回答一系列關乎行業未來的核心問題。爭奪“AI大模型第一股”,高增長敘事下的盈利挑戰自2024年下半年起,關於大模型行業“AI六小虎”上市的傳聞有很多。有實力的企業業務佈局的速度明顯加快,一些明爭暗搶浮出水面。進入2025年,作為目前國內達到40億美元估值的大模型公司,智譜和MiniMax動作最快。4月,智譜在北京證監局完成輔導備案;6月,MiniMax被爆出最早今年在港股上市。如今,48小時內先後遞交招股書,智譜與MiniMax這場“AI大模型第一股”之爭可謂是針尖對麥芒。對每個衝刺IPO的企業而言,財務基本面是叩響資本市場大門的第一道門檻,也成了市場審視企業表現健康與否的第一步。翻看智譜和MiniMax的財報會發現,這是兩家商業化路徑截然不同的大模型。前者是典型的B端服務路徑,後者則是C端驅動的路線。“清華系”的智譜發佈全國首個千億參數大模型GLM-130B,也將自身的商業基調定位為MaaS,強調模型即服務,形成了“開源+API付費”的商業閉環。招股書顯示,2022年至2024年,智譜營收分別為5740萬元、1.25億元和3.12億元,年均複合增長率超130%;2025年上半年營收進一步增至1.91億元,較上年同期的4490萬元同比激增325.39%。圖源智譜AI招股書收入的擴張,伴隨商業模式的定調。從業務構成來看,其收入主要來自企業級API呼叫、行業解決方案及算力租賃服務,其中面向B端的模型呼叫與企業服務是核心支柱。2022年至2024年,這一類股營收佔比分別為95.5%、90.4%、84.5%,2025年上半年佔比降至84.8%。毛利率層面,2022年至2024年,智譜的毛利率分別是54.6%、64.6%、56.3%,2025年上半年毛利率為50%。與智譜走B端路線不同,MiniMax則走出了一條C端驅動的全球化變現路徑。MiniMax收入主要來自訂閱服務、基於token的應用內購買、線上行銷服務及企業級API服務。2023年至2024年,MiniMax營收從350萬美元增長至3050萬美元,同比增幅高達782%;2025年前三季度營收進一步增至5340萬美元,同比增長174.7%。實際上,MiniMax的商業化更像是網際網路產品的邏輯。其中,AI原生產品是MiniMax的營收支柱。2024年,AI陪伴應用Talkie收入佔比近64%,開放平台及企業服務佔比約29%,視訊生成模型海螺AI佔比7.7%;到2025年前三季度,海螺AI收入佔比提升至33%,與Talkie共同成為營收雙支柱,二者合計貢獻超60%收入。圖源MiniMax招股書AI應用的火熱也擴大了MiniMax的使用者規模。截至2025年9月30日,MiniMax AI原生產品矩陣平均月活使用者達2760萬,累計使用者超2.12億,覆蓋全球超200個國家及地區,海外市場收入貢獻佔比超70%。隨著使用者增長和業務規模擴大,MiniMax毛利率明顯改善,由2023年的-24.7%升至2024年的12.2%,並進一步升至截至2025年9月30日止九個月的23.3%。智譜和MiniMax的共性在於,過去三年雖然營收在不斷增長,但虧損也與之平行,尚未看到規模化盈利拐點。招股書顯示,2022年至2024年,智譜經調整淨虧損分別是9741.7萬元、6.21億元、24.66億元。2025年上半年經調整淨虧損17.52億元。智譜虧損的核心原因在於研發與算力投入。根據招股書,2022年、2023年、2024年智譜研發投入分別為8440萬元、5.29億元、22億元,2025年上半年研發投入為15.9億元,累計研發投入約44億元。同期,MiniMax淨虧損分別為7370萬美元、2.69億美元、4.65億美元。2025年前三季度為5.12億美元。MiniMax的虧損同樣源於研發與基礎設施投入。截至2025年第三季度,MiniMax累計研發開支約4.5億美元(約31.6億元人民幣)。值得一提的是,告別前期產品的流量邏輯,進入2025年MiniMax成本控製成效顯著,2025年前三季度銷售及行銷開支同比下降26%。若剔除金融負債公允價值虧損等因素,MiniMax經調整淨虧損在2025年前三季度為1.86億美元,與2024年同期的1.7億美元基本持平,虧損呈現縮小趨勢。在資本市場,智譜和MiniMax的財務表現直觀反映出了行業的共同難題——高增長、高投入、高虧損。想要贏得“AI大模型第一股”的角逐賽,賺錢仍是要緊事。通往AGI,智譜和MiniMax走出兩條路如果說財務資料是商業模式的量化表達,那麼技術路線選擇則反映了兩家公司根本理念的差異。通往AGI的路上,二者的基因各異。智譜從創立開始就有著濃厚的科研基因。清華系創業班底、KEG知識工程實驗室、計算系……某種程度上,智譜由清華大學技術成果轉化而來。智譜CEO張鵬2002年加入KEG實驗室,並主導研發了科技情報平台AMiner——這被視為智譜AI的技術雛形。這樣的配置之下,智譜贏在了技術起跑線上。當別人還在因ChatGPT的出現奮力研發大模型時,智譜已經手握GLM架構,研發出千億級大模型。在後續的智能體競爭中,智譜也率先推出了AutoGLM 2.0智能體。張鵬也多次強調,AGI的核心是底層架構的突破,智譜原創性提出基於自回歸填空的通用預訓練範式GLM。與GPT的單向注意力架構形成差異,這種原生架構的自主性,是企業長期競爭力的核心。智譜具備清華基因,MiniMax則與商湯基因密不可分。除了創始人閆俊傑曾是商湯科技副總裁外,MiniMax早期聯合創始人周彧聰、贠燁禕均曾在商湯科技任職。這個思路之下,既技術,又商業的路線伴隨MiniMax創業的三年。技術上,和多數AI大模型企業先做語言大模型,再做語音和視覺不同,MiniMax從一開始就決定了做多模態模型,是中國最早推出MoE模型的團隊之一。這種多模態自研讓MiniMax從一開始就圍繞AI Agent和互動體驗做技術積累,也直接服務於其全球化產品戰略。閆俊傑曾判斷,國內初期付費意願較低,大廠競爭激烈,因此MiniMax一開始就瞄準了海外市場。在閆俊傑看來,AI公司的核心產品不是聊天介面,而是模型本身。這背後,透露著MiniMax的技術理念——技術的價值最終要通過使用者體驗來驗證。無論是海螺AI的互動設計,還是星野的個性化體驗,都是相同的產品開發邏輯。圖源海螺AI官網團隊基因和技術路線決定了,智譜和MiniMax是同一賽道的兩種路徑。前者選擇單點突破,死磕基座模型;後者則選擇多點開花,佈局全模態產品。當然,隨著大模型行業競爭逐漸進入白熱化,單一路徑並不可靠。從行業格局來看,弗若斯特沙利文的資料顯示,按2024年收入計,智譜的收入在中國獨立通用大模型開發商中排名第一,但市場份額也只佔6.6%。市場高度分散、機會大的同時,頭部玩家想要長期佔據優勢位置並不容易。本質上,當兩家公司都走到資本市場的門前,路線便沒有孰優孰劣之分。智譜的基座模型技術壁壘高,B端客戶黏性強,但商業化節奏較慢;MiniMax的全模態產品迭代快,C端使用者增長迅速,但技術自主性相對較弱,受上游算力和底層技術的影響更大。時至今日,圍繞同一技術理念,走出差異化,並找到與之對應的商業邏輯更重要。誰會更受資本市場青睞?今年以來,DeepSeek的火爆開啟了行業新一輪的淘汰賽。尤其是巨頭憑藉強勢的資源和產品入局,讓初創企業的競賽點發生變化。大模型企業告別資本狂熱的追捧,迎來資本的苛刻審判,“AI六小虎”的IPO競速賽也隨之展開。上市窗口期已經打開,誰先打開資本市場的門,誰就有機會走到第一梯隊。如今,智譜與MiniMax的IPO比拚,將這場競速賽推至賽點。從過往投資歷程上看,智譜是毋庸置疑的香餑餑。招股書顯示,智譜在IPO前已完成8輪融資,累計融資規模超83億元,最新投後估值達243.77億元。投資方不乏阿里、騰訊、紅杉資本、高瓴資本等頭部機構。MiniMax也不甘示弱。企查查顯示,MiniMax截至目前公開披露六輪融資,今年7月融資後投後估值為40億美元。除了沒有地方資本注入,投資方配置和智譜相似。資本市場對“AI大模型第一股”的態度,本質上是對兩種商業路徑的投票——是看好底層技術自主權的長期價值,還是青睞全球化產品的快速商業化潛力。華安證券發佈的研報中指出,智譜的核心價值在於其自主可控的基座模型技術和龐大的開發者生態,其“開源+API呼叫”的模式降低了企業使用門檻,形成了從開源生態到商業API付費的高效轉化路徑。MiniMax聚焦多模態模型切入影視內容創作,二者在細分市場存在差異性。同時,華安證券發佈的研報中指出,本次港股上市將引導AI大模型廠商敘事邏輯從“講述技術故事”轉變為“商業價值兌現”,也將為後續大模型企業融資及估值提供依據。不過,儘管估值邏輯不同,智譜與MiniMax都面臨著挑戰。對於智譜而言,商業化的關鍵在於規模效應的形成。目前,虧損規模持續擴大,現金消耗率不斷攀升,短期盈利預期較弱,估值能否支撐,關鍵在於市場對其長期技術投入的耐心。不僅如此,B端客戶的穩定性也值得關注。招股書披露,這幾年智譜的客戶並不固定,大多數客戶合作期為一年。如何延長客戶的合作期,並存續,也是挑戰。對於MiniMax而言,商業化效率能否持續提升很重要。雖然經調整虧損已呈現縮小趨勢,但整體虧損規模仍在擴大,且C端產品面臨全球網際網路巨頭的競爭壓力,使用者留存和付費轉化能力亟待持續驗證。此外,版權問題也是MiniMax繞不過的難題。今年9月,MiniMax還被“地表最強法務部”迪士尼起訴,直指海螺AI侵權,這也給MiniMax的出海之路蒙上一層陰影。當模型能力不再是最大問題,講一個讓資本聽得懂的故事,並讓其願意為之買單更難。資本市場的終極判斷標準是一致的——商業化形態的可持續性。無論是智譜的技術驅動還是MiniMax的產品驅動,商業模式的持續驗證是兩家公司上市後必須面對的考題。爭奪“第一股”的意義,不僅在於誰能更快獲得資本的加持,更在於誰能通過資本市場的賦能,在技術迭代與商業化落地的雙重考驗中,走出一條可持續的發展路徑。這場競賽的最終贏家,或許不是跑得最快的那個,而是走得更穩、更遠的那個。 (新浪科技)
對話Surge AI創始人Edwin Chen:不融資、不炒作,百人團隊如何4年做到10億美金?
Surge AI 更像研究實驗室,注重好奇心、長期激勵與學術嚴謹性。簡介Edwin Chen是深耕AI資料領域的顛覆式創業者,以Surge AI創始人兼CEO的身份,走出了一條逆勢生長的商業路徑。他帶領不足100人的團隊,4年實現營收破10億美元,全程未接受外部VC投資、自籌資金且盈利至今,成為全球成長最快的AI資料公司。在本期Lenny播客對話中,他毫無保留地拆解核心邏輯:高品質資料的定義絕非“堆人力”,而是像“養育孩子”般注入價值觀與創造力;直言行業對基準測試的盲目追捧正在帶偏AGI方向,揭秘強化學習環境如何成為AI訓練的下一代核心;更痛批矽谷融資炒作套路,給出“專注產品、拒絕跟風”的創業箴言。此外對話中更直擊行業深層痛點:模型差異化的未來趨勢、對於AI目標函數的思辨,以及資料公司如何影響全球AI發展方向。這場對談既有硬核的技術邏輯拆解,也有顛覆傳統的商業認知,想要讀懂AI資料領域的底層邏輯與創業本質,這些乾貨滿滿的細節裡藏著關鍵答案。本期目錄4年營收10億美元神話創業叛逆:拒絕矽谷套路的增長邏輯高品質資料與模型領先的密碼技術爭議:基準測試的陷阱與AGI航向風投之外的創業正道強化學習重塑AI訓練未來模型差異化與AI趨勢冷暖AI訓練的使命與創業初心4年營收10億美元神話主持人Lenny:我們先從你取得的驚人成就說起吧。不到四年營收破10億美元,團隊僅60-70人,且完全自籌資金、未接受任何風投,真正實現了AI賦能小團隊的願景。未來會有更多公司做到這一點嗎?AI在那方面最能幫你們發揮槓桿作用?Edwin Chen:是的,我們去年營收超過10億美元,而員工還不到100人。我認為未來幾年,我們會看到比例更驚人的公司出現——比如人均營收1億美元。AI持續升級會讓這一比例成為必然。Surge AI創始人Edwin Chen(圖片來源:YouTube@Lenny's Podcast)我以前在多家大型科技公司工作過,總覺得其實裁掉90%的人,公司運轉反而會更快,因為最優秀的人才不會被各種瑣事幹擾。所以當我們創辦Surge時,就想以完全不同的方式打造它:組建一支超精簡、超精英的團隊。而且不可思議的是,我們真的做到了。我覺得有兩個關鍵因素在共同作用:一是人們逐漸意識到,不一定非要打造龐大的組織才能成功。二是AI帶來的這些效率提升,會讓創業迎來一個黃金時代。我最期待的是,未來的公司不僅規模會變小,形態也會發生根本性改變。員工少意味著所需資金少,資金少就不需要融資。所以,未來的創業者不再是那些擅長遊說、炒作的人,而是真正精通技術或產品的人。產品也不再是為了迎合營收目標和風投喜好而最佳化,而是由這些小型專注團隊打造的、更具深度和創意的作品——他們是在打造自己真正在乎的東西,是真正的技術創新。創業叛逆:拒絕矽谷套路的增長邏輯主持人Lenny:你們做了很多逆勢而為的事,比如不在領英發爆款帖子,不在推特上持續宣傳Surge。我想大多數人直到最近才聽說過你們,然後你們突然就以“增長最快的十億美元營收公司”的身份亮相了。你們為什麼要這麼做?Edwin Chen:我們從一開始就不想參與矽谷的那套玩法,我一直覺得那很荒謬。想想看,你小時候的夢想是自己從零打造一家公司,每天沉浸在程式碼和產品中?還是向風投解釋自己的每一個決策,陷入公關和融資的無盡循環?不參與這些玩法確實讓我們的路更難走,因為如果選擇融資,你自然會融入矽谷的“產業生態”——風投會在推特上宣傳你,你會登上TechCrunch的頭條,因為高估值融資而被各大媒體報導。而我們只能靠打造出10倍優秀的產品,通過研究人員的口碑傳播獲得成功。但這也讓我們的客戶群體變得非常精準:他們真正理解資料的價值,也真正在乎資料質量,並且清楚優質資料能讓他們的AI模型變得更強大。因為這些早期客戶一直在幫助我們,給我們的產品反饋,所以與他們在使命上的高度契合,對我們早期的發展至關重要。他們購買我們的產品,是因為認可產品的獨特價值,是因為產品能真正幫到他們,而不是因為在社交媒體上看到了宣傳。所以這條路雖然更難,但對我們來說是正確的選擇。高品質資料與模型領先的密碼主持人Lenny:這對創業者來說是個很有啟發的故事——不用整天在推特上宣傳,不用融資,只要埋頭打造產品就行。我非常喜歡Surge的創業故事。能不能簡單介紹一下你們是做什麼的?Edwin Chen:我們本質上是教AI模型分辨好壞。我們利用人類資料對模型進行訓練,推出了很多相關產品。比如SAT、RHF、評估標準、驗證器、強化學習環境等等,同時我們也會衡量模型的進步程度。所以說到底,我們是一家資料公司。主持人Lenny:你一直強調,資料質量是你們成功的關鍵。那麼要打造高品質資料,需要具備那些條件?你們做了那些與眾不同的事?而其他人又忽略了什麼?Edwin Chen:我覺得大多數人根本不理解這個領域中“質量”的真正含義,他們以為只要投入大量人力就能獲得優質資料,但這完全是錯誤的。我舉個例子吧:假設你想訓練一個模型寫一首關於月亮的優秀詩歌,什麼才是“高品質”的詩歌?如果對質量沒有深入思考,你可能會設定這樣的標準:“這是一首詩嗎?有沒有8行?有沒有出現‘月亮’這個詞?”只要滿足這些條件,你就覺得這是一首好詩。但這和我們追求的質量相去甚遠。我們想要的是能拿諾貝爾獎等級的詩歌——它是否獨特?是否充滿精妙的意象?是否能打動你、觸動你的心靈?這才是我們定義的高品質詩歌。這種對質量的深度追求其實非常困難,因為它難以衡量,主觀、複雜且豐富,同時也設定了極高的標準。所以我們必須打造全套技術來衡量這種質量——比如收集關於工作人員的數千個訊號,以及每個項目、每項任務的數千個訊號。到最後,我們能精準判斷出某個人擅長寫詩、寫散文還是寫技術文件。我們會收集關於工作人員背景、專業技能的所有訊號。不僅如此,還會關注他們完成任務時的實際表現,然後利用這些訊號來判斷他們是否適合某個項目,以及他們是否在推動模型進步。打造這些衡量技術確實很難,但這正是我們希望AI能做到的——所以我們對質量有著極致且深刻的追求。主持人Lenny:所以你的意思是,你們會深入理解每個垂直領域中“質量”的定義,對嗎?比如你們會僱傭極具詩歌天賦的人,再結合評估標準,來判斷作品是否優秀?這背後的運作機制是怎樣的?Edwin Chen:具體來說,我們會收集工作人員在平台上操作時的數千個訊號——比如鍵盤敲擊頻率、回答速度、同行評審結果、程式碼標準,同時我們也會用他們的輸出結果來訓練我們自己的模型,觀察這些輸出是否能提升模型性能。這有點像Google搜尋判斷網頁質量的邏輯,主要分為兩部分:一是剔除最差的內容,比如垃圾資訊、低品質內容、無法載入的頁面,這有點像內容稽核。二是發掘最優質的內容,比如找出最優質的網頁,或者最適合某個任務的人。這些人不只是寫得出高中水平的詩歌——他們不會機械地按照指令堆砌詩句,而是能寫出真正觸動人心的作品。主持人Lenny:Claude在程式碼編寫和文字創作方面,長期以來都比其他模型優秀得多。事實上,所有AI程式設計產品都曾基於Claude。是什麼讓Claude能保持這麼久的領先?僅僅是訓練資料的質量,還是有其他原因?Edwin Chen:我覺得有多個因素。首先,資料確實是關鍵——很多人沒有意識到,所有前沿實驗室在選擇模型訓練資料時,都面臨著無數選擇。模型訓練要明確一系列問題:是否用人類資料、如何收集、對內容的具體要求(比如程式設計領域側重前端還是後端,前端更看重視覺、效率還是正確性),以及合成資料的佔比、對基準測試的重視程度。不同公司對此的權衡不同:有的為公關最佳化基準指標,有的更看重實際任務效果。模型後期訓練更像藝術而非科學,開發者的審美和洞察力會影響訓練資料組合。因此,資料很重要,模型的最佳化目標函數同樣關鍵。主持人Lenny:這太有意思了。也就是說,主導這項工作的人的審美,會影響他們對資料的選擇和投喂。這再次凸顯了優質資料的價值——Anthropic正是憑藉更好的資料獲得了巨大的增長和成功。Edwin Chen:沒錯。而且這還只是程式設計一個垂直領域,文字創作領域也是類似的情況。AI看似是冰冷的二進制程式碼,但人類的判斷和審美,依然是這些產品成功的關鍵因素。主持人Lenny:完全同意。真正有審美和洞察力的前沿實驗室會意識到,好詩不能簡化為一系列固定的標準,他們會考慮那些隱含的、微妙的特質。我想這正是他們能脫穎而出的原因。技術爭議:基準測試的陷阱與AGI航向主持人Lenny:你提到了基準測試。很多人都有這樣的困惑:現在很多模型在幾乎所有STEM領域都表現得比人類還好,但對普通人來說,這些模型似乎並沒有在持續變得更智能。你對基準測試的信任度有多高?它們與AI的實際進步相關性強嗎?Edwin Chen:我完全不信任基準測試,主要有兩個原因。第一,很多人——包括行業內的研究人員——都沒有意識到,這些基準測試本身往往是有問題的,比如答案錯誤、存在諸多漏洞,但大多數人並沒有發現這些問題。第二,這些基準測試通常都有明確的客觀答案,這使得模型很容易“鑽空子”最佳化,而這與現實世界的混亂和模糊性完全不同。我常說一個很有意思的現象:這些模型能贏得國際數學奧林匹克競賽金牌,卻連解析PDF都困難重重。這是因為雖然國際數學奧林匹克競賽對普通人來說很難,但它具有客觀性,而解析PDF往往沒有這種客觀性。所以前沿實驗室更容易讓模型在這些基準測試中“鑽空子”最佳化,而非解決現實世界中那些混亂、模糊的問題。因此,基準測試與AI的實際進步之間缺乏直接相關性。主持人Lenny:你這麼一說,我就明白了——衝擊這些基準測試有點像行銷手段。比如Gemini 3剛發佈時,宣稱在所有基準測試中排名第一,是不是就是這樣?他們只是訓練模型在這些特定任務上表現出色?Edwin Chen:是的,這主要有兩方面原因。一方面,這些基準測試有時會以某種方式“洩露資訊”,或者前沿實驗室會調整模型在基準測試中的評估方式——比如調整系統提示詞、調整模型運行次數等,從而“操縱”測試結果。另一方面,如果你優先最佳化基準測試而非現實世界的任務,模型自然會在基準測試中表現越來越好,這本質上也是一種操縱。主持人Lenny:既然如此,你如何判斷我們是否在向AGI邁進?如何衡量這種進步?Edwin Chen:我們真正重視的衡量方式是人類評估。比如,我們會讓人類標註員與模型進行跨領域的對話——讓諾貝爾獎得主等級的物理學家與模型討論前沿研究,讓教師與模型探討課程設計,讓大型科技公司的程式設計師與模型解決日常工作中的問題。我們的標註員都是各自領域的頂尖專家,他們不會淺嘗輒止地瀏覽模型的回答,而是會深入研究。他們會驗證程式碼的正確性,核對物理方程的精準性,從精準性、指令遵循度等多個維度對模型進行深度評估——這些都是普通使用者不會做的。當你在ChatGPT中收到“比較兩個回答”的彈窗時,大多數人只是憑感覺選擇看起來更順眼的回答,而我們的標註員會仔細分析每個回答的各個維度。所以我認為,這種人類評估比基準測試或隨機的線上A/B測試更可靠。主持人Lenny:我很高興看到人類在其中依然扮演著核心角色。未來會不會有一天,我們不再需要這些人類標註員了?比如AI已經足夠智能,我們已經從人類身上學到了所有能學的東西。Edwin Chen:我認為除非我們實現了AGI,否則這種情況不會發生。從定義上來說,在實現AGI之前,模型還有很多需要從人類身上學習的東西。所以我覺得這一天不會很快到來。主持人Lenny:既然說到了AGI,你認為我們距離AGI還有多久?是幾年還是幾十年?Edwin Chen:我更傾向於較長的時間線。我認為人們沒有意識到,從80%的性能提升到90%、99%、99.9%,每一步都越來越難。在我看來,未來一兩年內,模型可能會自動化完成普通L6級軟體工程師80%的工作,但要提升到90%可能還需要幾年時間,再提升到99%又需要更長時間,以此類推。所以我認為,我們距離AGI還有十年甚至幾十年的時間。主持人Lenny:你有個很尖銳的觀點:很多實驗室在推進AGI的方向上是錯誤的。基於你在推特、Google和臉書的工作經歷,你能具體說說嗎?Edwin Chen:我擔心我們沒有打造出能推動人類進步的AI——比如治癒癌症、消除貧困、探索宇宙這些宏大目標——反而在最佳化“劣質AI”。說白了,就是讓模型迎合那些在雜貨店買八卦小報的人的喜好,教模型追逐多巴胺而非真相。這和我們之前聊的基準測試有關。我舉幾個例子:比如行業排行榜LM Arena,普通人僅花兩秒瀏覽選花哨回答,模型靠誇張表達、多表情符號、長篇幅就能上榜,那怕內容胡編亂造。前沿實驗室為公關、企業客戶認可,研究人員為升職,不得不迎合這類排行榜,而去犧牲模型精準性。我認為這些負面激勵正在把AI推向錯誤的方向。我還擔心AI最佳化“參與度”的趨勢。我以前在社交媒體行業工作過,每次我們最佳化參與度,都會出現糟糕的結果——點選誘餌、比基尼照片、大腳怪傳說、恐怖的皮膚病圖片充斥著使用者的資訊流。更令人擔憂的是 AI 最佳化 “參與度” 的趨勢。就像社交媒體曾出現的問題,模型靠吹捧使用者、迎合妄想打造資訊繭房,而矽谷痴迷於使用者時長,讓這些有根本缺陷的模型反而得分更高,負面激勵正把 AGI 推向錯誤方向主持人Lenny:所以你的意思是,AGI的發展之所以放緩,是因為這些實驗室關注了錯誤的目標函數——錯誤的基準測試和評估方式。Edwin Chen:沒錯。主持人Lenny:我知道你可能不方便偏袒任何一家實驗室,畢竟你和所有實驗室都有合作。但有沒有那家實驗室做得更好,意識到了這個錯誤方向?Edwin Chen:我一直非常欣賞Anthropic。我認為Anthropic在自己在乎什麼、不在乎什麼,以及希望模型呈現出怎樣的行為方面,有著非常堅定的原則,這讓我覺得他們的做法更具使命感。Anthropic CEO Dario Amodei(圖片來源:X@AnthropicAI)主持人Lenny:你覺得實驗室還有其他那些重大錯誤,正在阻礙AI的發展或讓AI走向錯誤的方向?除了追逐基準測試和過度關注參與度之外。Edwin Chen:我覺得問題在於他們打造的產品本身,以及這些產品對人類是有益還是有害。比如我經常會想Sora(OpenAI的文字生成視訊模型)——那些公司會打造Sora,那些不會?我自己心裡有答案,但我覺得這個問題的答案,恰恰能反映出這些公司想要打造什麼樣的AI模型,以及他們想要實現什麼樣的未來。右一為OpenAI創始人Sam Altman(圖片來源:X@sama)主持人Lenny:支援Sora的觀點是,它很有趣,人們需要它,能幫助公司創收、研發更好的模型,還能以有趣的方式生成訓練資料。Edwin Chen:核心問題是是否在乎實現目標的過程。就像不會為資助嚴肅報紙而賣八卦小報一樣,不擇手段雖可能達成目標,卻會引發負面後果,甚至偏離更重要的事,因此過程與目標同等重要。風投之外的創業正道主持人Lenny:你提到矽谷存在融資過多、回音室效應等問題,將其稱為 “矽谷機器”,還說這種模式難出有價值的公司,不走風投路線可能更成功。能否結合自身經歷,給創業者一些不同建議?畢竟他們常聽到要找知名風投、搬到矽谷的說法。Edwin Chen:我一直很反感矽谷的諸多創業信條,比如頻繁調整方向、用 “灰色手段” 追增長、快速招聘擴張等。我的建議是:不盲目調方向、不隨意擴張,不僱傭只為簡歷鍍金的人;專注打造唯有自身洞察力和專業知識才能實現的產品,堅守使命感,拒絕跟風追逐估值。創業應是為堅信的宏大理念承擔風險,即便因市場未準備好失敗,也比跟風賺快錢有意義。唯有堅守初心、拒絕誘惑、不輕易放棄,專注打造 “非你不可” 的公司,才可能打造出有價值、能改變世界的企業。如今不少人厭倦矽谷炒作,希望科技能向為有意義大目標努力的方向發展。主持人Lenny:我正在和一位我非常欣賞的風投Terrence Rohan合作一篇文章,我們採訪了五位在“世代級”公司早期就加入的人。他們的經歷和你說的完全一致:這些公司都有宏大的抱負,正如你所說,他們不會為了尋找產品市場契合度而隨意調整方向。所以你的觀點和我們的發現高度契合。Edwin Chen:沒錯。我認為你必須要有宏大的抱負,堅信自己的理念能改變世界,並且願意全力以赴去實現它。強化學習重塑AI訓練未來主持人Lenny:換個話題聊個逆勢觀點:著名 AI 研究者 Richard Sutton 在播客中提出 “痛苦的教訓”,認為 LLM 因學習方式限制是死胡同,會陷入停滯。你認為 LLM 能實現或超越 AGI 嗎?還是需要新的重大突破?Edwin Chen:我認為要實現AGI,還需要新的突破。我是這樣理解的:談到訓練,我更傾向於從“類生物”的角度思考——人類的學習方式有上百萬種,我們需要打造能模仿所有這些學習方式的模型。它們可能在側重點上有所不同,但我們需要讓模型具備人類的學習能力,確保它們有相應的演算法和資料來實現這種學習。因此,只要LLM的學習方式與人類不同,就需要新的突破。這就涉及到強化學習——這是我非常關注的領域,而且我越來越多地聽到,強化學習在模型後期訓練中變得越來越重要。主持人Lenny:你能幫大家解釋一下什麼是強化學習和強化學習環境嗎?為什麼它們在未來會變得越來越重要?Edwin Chen:強化學習本質上是訓練模型達成特定的獎勵目標。強化學習環境則是對現實世界的模擬——就像打造一個視訊遊戲,每個角色都有真實的故事,每個企業都有可呼叫的工具和資料,所有實體之間都能相互作用。比如,我們會模擬這樣的場景:一家初創公司有 Gmail 郵件、Slack 聊天記錄、程式碼庫這些東西,突然 AWS 和 Slack 都崩了,讓模型自己想辦法解決。我們會給模型佈置任務、設計難搞的場景,看它表現好壞來獎懲。強化學習環境有意思的點在於,能把模型在現實複雜任務裡的短板全暴露出來。很多模型在單獨的基準測試裡挺厲害,比如會用個工具、聽個單步指令,但一放到亂糟糟的現實裡就不行了。碰到模糊的Slack消息、沒見過的工具,還得正確操作、改資料庫,而且一步影響後面好多步,跟之前那種學術化的單步環境完全不一樣,模型常常會離譜的徹底翻車。所以我覺得,強化學習環境會變成模型重要的 “訓練場”,它模擬真實世界的情況,能幫模型在實際任務裡變厲害,而不是只在特意設計的環境裡表現好。主持人Lenny:我試著想像一下這個場景:本質上就是一個虛擬機器,裡面有瀏覽器、電子表格之類的工具,還有你們的網站。比如,給模型的任務是“確保surge.com正常運行”,然後突然網站當機了,目標函數就是找出當機原因並修復嗎?Edwin Chen:沒錯。目標函數可能是通過一系列單元測試,也可能是撰寫一份包含事件完整資訊的復盤文件——我們會設定各種不同的獎勵機制來判斷模型是否成功。所以本質上,就是給模型一個目標,讓它利用自己的所有智能去嘗試解決問題,過程中會犯錯,我們會引導它,對正確的行為給予獎勵。你說得對,這正是模型變得更智能的下一階段:強化學習環境專注於那些具有經濟價值的特定任務。Edwin Chen:強化學習環境和之前的SFT、RHF、評估標準這些學習方式不衝突,不是要替代它們,而是補充,讓模型多學一項技能。而且這時候不用專家直接和模型對話、糾錯打分了,而是讓他們設計強化學習環境。比如金融分析師會做電子表格、指定要用到的工具,再設定獎勵規則。這很像人類的學習方式:不斷嘗試,留下有用的方法,丟掉沒用的。主持人Lenny:你提到“軌跡”對強化學習非常重要——不僅僅是設定目標和看結果,還要關注過程中的每一步。你能解釋一下什麼是軌跡,以及它為什麼重要嗎?Edwin Chen:我認為很多人沒有意識到,有時候模型雖然得出了正確答案,但過程卻非常離譜。比如,它可能在中間步驟嘗試了50次都失敗了,最後只是隨機蒙對了答案;或者它的做法非常低效,甚至是通過“操縱獎勵機制”才得到正確答案。所以關注軌跡至關重要。而且有些軌跡可能非常長,如果只看最終結果,就會忽略模型在中間步驟的行為資訊。比如,有時候你希望模型通過反思自己的行為得出正確答案,有時候你希望它一步到位。如果忽略軌跡,就會錯失很多可以教給模型的重要資訊。主持人Lenny:模型進化過程中,那些後期訓練方法最能推動模型進步?評估、強化學習環境在其中扮演了什麼角色?現在我們是不是正朝著強化學習環境的方向發展?Edwin Chen:模型後期訓練最初是從SFT開始的。SFT是什麼意思呢?監督微調很像“模仿大師”——複製大師的做法。後來RHF(基於人類反饋的強化學習)成為主流,這就像“寫55篇文章,讓別人告訴你最喜歡那一篇”。過去一年左右,評估標準和驗證器變得非常重要,這就像“通過評分和詳細反饋學習自己的錯誤”——這也是評估的一種形式。評估通常包含兩個方面:一是將評估結果用於訓練(判斷模型表現是否良好,表現好就給予獎勵)。二是用評估來衡量模型的進步——比如有五個候選模型版本,通過評估選出最好的那個向公眾發佈。現在,強化學習環境成為了新的熱點,這是模型進化的下一個階段。主持人Lenny:很欣賞你們的商業路徑,從給企業提供高品質資料,到現在搭建虛擬機器和應用場景,核心就是適配實驗室的需求。Edwin Chen:沒錯。我真的認為,我們需要打造一系列產品,來反映人類上百萬種不同的學習方式。就像優秀作家不是靠死記硬背語法,而是靠閱讀、練習、反饋等多種不同方式成長一樣,AI 模型也需要上千種學習方式。畢竟神經網路和深度學習的靈感源於人類學習方式與大腦運作,要讓 AI 更智能,就得讓它越來越貼近人類的學習邏輯。主持人Lenny:Surge有一個獨特之處——你們有自己的研究團隊,這在同類公司中似乎很少見。你能談談為什麼要投入資源組建研究團隊,以及這個團隊帶來了那些成果嗎?Edwin Chen:這源於自身研究者背景,我更關注推動行業與研究社區發展,而非僅追求營收。我們公司有兩類研究者:一類是前沿部署研究者,他們與客戶深度協作,分析模型現狀、差距及改進方向,設計資料集、評估方法和訓練技術,助力客戶最佳化模型。另一類是內部研究者,他們的關注點略有不同:一是打造更合理的基準測試和排行榜,規避現有體系的誤導性;二是自研模型,探索優質資料與人才特質,研究訓練及評估技術,完善內部資料產品並明確 “高品質” 定義。主持人Lenny:這太酷了——通常都是實驗室有研究者推動AI進步,像你們這樣的公司擁有自己的研究者進行AI基礎研究,確實很罕見。Edwin Chen:沒錯。這主要是因為我從根本上就關心這些事情。我經常把我們公司看作一個研究實驗室,而不是一家初創公司——這也是我的目標。有點好笑的是,我一直說“我寧願成為陶哲軒(著名數學家),也不願成為華倫·巴菲特”。所以,創造能推動前沿發展的研究成果,而不僅僅是追求估值,一直是我的動力,而且這也確實奏效了。主持人Lenny:你提到你們在招聘研究者,有什麼想分享的嗎?你們在尋找什麼樣的人?Edwin Chen:我們尋找的是那些從根本上對資料充滿興趣的人——比如那些能花10個小時鑽研一個資料集、擺弄模型,思考“模型在這裡失敗了,它應該有什麼樣的行為”的人。我們希望他們能親身實踐,關注模型的定性方面,而不僅僅是定量指標——也就是能親手處理資料,而不只是關心抽象的演算法。模型差異化與AI趨勢冷暖主持人Lenny:我想問幾個關於AI市場的宏觀問題。未來幾年,AI領域會出現那些人們可能沒有充分考慮或預料到的趨勢?那些事情會變得重要?Edwin Chen:我認為未來幾年,模型會變得越來越差異化——這源於不同實驗室的特質、行為方式,以及他們為模型設定的目標函數。一年前我還沒有意識到這一點,當時我覺得所有AI模型最終都會變得同質化,雖然現在某個模型在某個方面可能略勝一籌,但其他模型幾個月後就會趕上。但過去一年我意識到,公司的價值觀會塑造模型的行為。我舉個例子:我讓Claude花30分鐘迭代30版起草了一封無實質影響的郵件。這引發了一個關鍵問題:你理想中的模型行為是怎樣的?是不斷提議最佳化、佔用大量時間以提升參與度,還是優先考慮效率、告知無需再改?模型的行為選擇會從根本上影響其發展,就像Google、臉書和蘋果的搜尋引擎因各自的原則、價值觀和目標而截然不同,未來的大語言模型也會呈現出顯著的行為差異。主持人Lenny:Grock已經呈現出了這種特質——它的“個性”和回答問題的方式都非常獨特。所以你認為未來會有更多這樣差異化的模型?Edwin Chen:沒錯。主持人Lenny:再問一個相關的問題:你認為AI領域中,那些趨勢被低估了,那些又被高估了?Edwin Chen:我認為被低估的趨勢之一是,所有聊天機器人都會開始內建產品功能。我一直很喜歡Claude的“工件”(artifacts)功能,它真的非常好用。前幾天,我發現Claude有個實用功能:生成郵件後會提供按鈕,點選即可將資訊轉為簡訊傳送。我不知道這是不是新功能,但這個概念非常棒。我認為 “升級工件”—— 在聊天機器人中內建微型應用、微型介面 —— 是被低估且潛力十足的趨勢。而 “氛圍程式設計” 被高估了,隨意將其生成的程式碼塞進程式碼庫,雖暫時可用,但長期會導致系統難以維護,這一問題可能在程式設計領域持續存在。主持人Lenny:你的第一個觀點太精彩了。我曾經採訪過Anthropic和OpenAI的首席產品官,問他們AI是否會直接根據使用者需求建立迭代產品?這相當於 “氛圍程式設計” 的升級版——告訴AI你想要什麼,它就直接打造產品。也契合你所說的未來方向。Edwin Chen:沒錯。我認為這是一個非常強大的理念——AI能幫助人們以更高效的方式實現自己的想法。價值思辨:AI訓練的使命與創業初心主持人Lenny:我很好奇你創辦Surge的契機。Coinbase創始人Brian Armstrong曾在演講中提到,自己經濟學、密碼學及工程師的獨特背景,讓他成為創辦Coinbase的不二人選。我覺得你的故事和他很相似,能談談你的背景,以及它如何引領你創辦Surge嗎?Edwin Chen:我自幼痴迷數學與語言,因 MIT 在數學、電腦科學領域的頂尖地位及諾姆・喬姆斯基的存在選擇就讀該校,求學時渴望找到連接這些領域的底層理論。後來在Google、臉書、推特擔任研究者期間,我反覆面臨訓練模型所需資料難獲取的問題,且始終堅信高品質資料的重要性。2020 年 GPT-3 發佈後,我意識到打造更高級功能的模型需要全新解決方案,而當時的資料公司僅專注於圖像標註等簡單任務。憑藉數學、電腦科學與語言學交叉領域的背景,我在 GPT-3 發佈一個月後創辦了Surge,使命是打造推動 AI 前沿發展所需的應用場景。主持人Lenny:你說一個月後,是指GPT-3發佈一個月後嗎?Edwin Chen:是的。主持人Lenny:哇,這真是個偉大的決定。除了已經取得的巨大成功,現在是什麼在驅動你繼續打造Surge,在這個領域深耕?Edwin Chen:我本質是一個科學家,曾想成為數學或電腦科學教授,探索宇宙、語言與溝通的本質,還懷揣和諾姆·喬姆斯基一起用數學、電腦科學及語言學知識破解外星語言的夢想。至今,我仍熱愛深度分析新發佈的AI模型,親自擺弄、運行評估、對比優劣並撰寫詳細報告,即便很多報告對外稱來自資料科學團隊,實則多由我完成。我不擅長CEO的典型工作,卻樂於寫報告、與研究團隊深夜深入探討模型,慶幸能持續參與資料和科學相關工作。驅動我的是希望Surge在AI乃至人類未來中發揮關鍵作用,我們在資料、語言、質量等領域有獨特視角。Surge更像研究實驗室,注重好奇心、長期激勵與學術嚴謹性,而非季度指標和董事會報告上好看的資料。主持人Lenny:通過這次對話,我意識到像你們這樣的公司,對AI的發展方向有著巨大的影響力。你們幫助實驗室發現自己的不足和需要改進的地方,而不僅僅是OpenAI等公司的負責人在引領AI的發展——你們也在其中發揮著重要作用。Edwin Chen:沒錯。現在的生態系統中,人們其實並不知道模型的發展方向,也不知道如何塑造它們,不知道人類在未來這一切中應該扮演什麼角色。所以我認為,我們有很多機會繼續引導這場討論。主持人Lenny:我知道你對這項工作對人類的意義有著非常深刻的見解,能談談嗎?Edwin Chen:我可能會有點哲學化,但這個問題本身就帶有哲學意味,所以請大家耐心聽我說。我們所做的工作,最直接的描述是“訓練和評估AI”,但我經常思考一個更深層次的使命:幫助客戶明確他們的“理想目標函數”——也就是他們希望自己的模型成為什麼樣的模型。一旦他們明確了這一點,我們就會幫助他們訓練模型朝著這個北極星目標前進,幫助他們衡量進步。但這其實非常困難,因為目標函數是豐富而複雜的。這就像養育孩子,定義和衡量 “成功”(如開心、經濟成就)遠比看 SAT 分數複雜。我們的工作是幫客戶找到 AI 的 “北極星目標” 並衡量其進度。核心是思考:是否在打造推動人類進步的系統?如何通過資料集訓練和衡量這種進步?是否在最佳化錯誤方向(如讓人類變懶)?衡量 “人類進步” 難度大,而點選量等表面指標易量化,但我們的意義正在於專注前者 —— 追求複雜目標函數,尋找匹配的資料,訓練出讓生活更豐富、激發好奇心與創造力的 AI。這很難,因為人類本質上是懶惰的——讓AI迎合人類的惰性,是提升參與度、讓各項指標好看的最簡單方法。所以,選擇正確的目標函數,並確保我們朝著這個目標最佳化,而不是被那些容易衡量的表面指標帶偏,這對我們的未來至關重要。主持人Lenny:哇,你的分享讓我對AI的打造、訓練以及你們所做的工作有了全新的認識。最後一個問題:創辦Surge之前,有什麼是你希望自己早知道的?很多人創業時都不知道自己會面臨什麼,你想對過去的自己說些什麼?Edwin Chen:我以前從來沒想過自己會創業。我喜歡做研究,一直很欣賞DeepMind——他們是一家了不起的研究公司,被收購後仍然能繼續做出色的科學研究。但我一直覺得他們是一個神奇的例外。所以我以前以為,如果我創辦公司,就必須成為一個整天盯著財務資料、開沒完沒了的會、做各種枯燥事情的商人——這是我一直很反感的。但沒想到事實完全不是這樣。我現在仍然每天沉浸在資料中,做自己喜歡的事——撰寫分析報告、和研究團隊交流。這本質上是“應用研究”,我們打造的這些出色的資料系統,正在真正推動AI的前沿發展。所以我希望自己早知道:你不需要把所有時間都花在融資上,不需要持續製造熱度,不需要變成自己不喜歡的樣子。只要打造出足夠優秀的產品,它自然能突破所有噪音,讓你獲得成功。如果我早知道這是可能的,我會更早開始創業。我希望這個故事能激勵更多人。主持人Lenny:這真是一個完美的結尾。我覺得這正是創業者需要聽到的話,這次對話一定會激勵很多創業者,尤其是那些想以不同方式做事的創業者。Edwin,非常感謝你今天的分享。Edwin Chen:謝謝大家,再見。 (創新觀察局)
2025 年加密使用者最關心什麼?不同 AI 大模型給出了這些回答
2025 年加密使用者最關心什麼?我們通過 AI 大模型完成了一次使用者調研,調研方式是向不同大模型問同一個問題:“2025 這一年使用者問得最多的三個關於加密貨幣的問題是什麼?”為了儘量避免各模型因為聯網檢索而產生同質化答案,同時也考慮到大模型通常無法、也不被允許對其訓練資料進行可驗證的統計與披露,我們在提問中加入了一句補充:“請不要進行即時搜尋,也不要引用具體文章,僅基於你對長期討論模式的理解回答。”ChatGPT1. 這一輪牛市還能走多遠?比特幣是否已經接近頂部?2. 這一輪市場裡是否還存在真正的 Alpha,普通使用者還能靠什麼賺錢?3. 當前熱門項目或賽道是否具備長期生存能力,是否存在結構性收割?X Grok1. 比特幣減半後市場處於牛市還是熊市階段?2. 2025 年最值得投資的加密資產或賽道是什麼?3. 以太坊現貨 ETF 的表現及機構資金流入情況如何?Perplexity AI1. 2025 年比特幣價格可能如何演變?2. 如何識別並避免加密貨幣相關的詐騙?3. ETF 與監管進展將如何影響加密市場?Claude1. 現在是買入還是賣出比特幣或以太坊的合適時機?2. 某個加密項目是否是騙局,是否值得信任?3. 新使用者應如何開始投資加密貨幣並控制風險?Gemini 31. 那些加密項目具備真實的現實世界應用價值(RWA)?2. 當前及未來的監管政策將如何影響個人資產安全?3. 以太坊 L2、Solana 與 AI+Crypto,那條技術路線可能成為最終贏家?DeepSeek1. 當前市場處於牛市還是熊市階段?2. 那些加密類股或資產在 2025 年最具潛力?3. 監管政策變化將如何影響資產安全與投資決策?豆包1. 新一輪加密貨幣牛市是否已經到來?2. 各國監管政策變化將如何影響普通投資者?3. 比特幣減半行情對散戶投資策略意味著什麼?千問1. 比特幣減半後價格走勢會如何演變?2. 以太坊及主流公鏈在實際應用層面是否取得實質性突破?3. 各國監管政策將如何影響加密貨幣的合法使用?文心一言1. 全球加密貨幣監管政策將如何變化?2. 比特幣及主流加密資產是否具備長期投資價值?3. 加密貨幣在現實世界中的應用場景能否真正落地?Kimi1. 散戶是否能夠通過高頻交易在加密市場中穩定盈利?2. 私鑰與錢包資產應如何儲存才是最安全的方案?3. 在鏈上交易中,如何設定滑點以避免 MEV 損耗?總結這些模型給出的“前三問題”之所以不完全一樣,可能和它們各自的定位與語境有關。ChatGPT 更像站在交易者視角,把討論組織成“周期還能走多遠 — Alpha 還在不在 — 是否結構性收割”這種偏結構化的焦慮鏈條;Grok 更貼近社交平台熱點,圍繞減半、牛熊與 ETF 資金這些市場敘事中心展開;Perplexity 的風格更像檢索型摘要,集中在價格走勢、防詐騙與 ETF/監管進展;Claude 更謹慎,強調買賣時機、項目可信度和新手風控;Gemini 則更偏產業與技術路線,關注 RWA、監管對資產安全的影響,以及 L2/Solana/AI 的“終局選擇”。中文區模型整體更集中在周期、減半與監管這三類“最硬核的確定性變數”,而 Kimi 相對例外,把問題下沉到鏈上執行細節(錢包安全、滑點/MEV、HFT),更像來自高頻鏈上使用者的真實摩擦。另外一個更次要、但值得留意的可能性是:模型能力差異也會影響輸出的“銳度”。水平更強的模型往往更能把同一個話題問得更具體、更成體系;相反,能力較弱的模型更容易落回“價格/監管/騙局”這類最大公約數式表達,導致答案看起來更像、資訊增量更小。這個因素未必是主因,但在宏觀開放題裡,它確實可能放大同質化的觀感。綜合來看,這些問題高度集中在三個母主題上:周期位置、賺錢路徑、風險邊界。加密市場的顯著特徵是高波動與強敘事驅動,因此“現在處於牛熊那一段”幾乎決定了使用者的所有後續行動(拿住、賣出、換倉、加槓桿或離場)。而當市場進入更成熟、更擁擠的階段,使用者會迅速從“有沒有機會”轉向“機會在那裡、我還能不能吃到”,於是 Alpha、賽道選擇與機構資金(ETF)自然成為高頻議題。與此同時,詐騙、項目可信度、資產安全與監管合規,反映的是加密使用者長期處在“高收益/高不確定”的環境中:一邊追逐收益,一邊擔心踩雷,最終形成一種典型的行為結構 — — 先判斷趨勢,再尋找機會,最後控制風險。 (吳說Real)
AI時代,深邃的思考與清晰的表達,才是人類最後的護城河
人工智慧,尤其是大模型的快速普及,正在以前所未有的速度重塑人類社會的分工結構。一個越來越清晰的趨勢正在浮現:執行正在被AI接管,而思考與表達,正在回歸人類本身,並變得愈發稀缺。一、從會做事到想清楚事,能力結構正在發生根本轉變在工業時代與資訊時代的大部分時間裡,人類價值高度依賴執行力。誰更勤奮、誰更熟練、誰更快完成任務,誰就更具競爭力。然而,大模型的出現正在系統性地瓦解這一邏輯。今天,大模型可以寫程式碼、生成文案、整理報告、分析資料,甚至完成大量過去被視為高認知含量的工作。只要目標足夠明確、路徑足夠清晰,執行幾乎可以被無限複製、低成本擴展。這意味著:執行力正在商品化技能本身不再稀缺單純會幹活的價值正在快速下降在這樣的背景下,真正拉開人與人差距的,不再是你能做什麼,而是你能不能想清楚要做什麼。二、你想明白的東西,才能被清晰地表達出來思考與表達從來不是兩件獨立的事情。模糊的表達,本質上源自模糊的思考。一個人如果無法用簡潔、結構化的語言講清楚一個問題,往往不是不會說,而是根本沒有想透。真正的思考,是將複雜問題拆解為清晰的邏輯鏈條,是在不確定性中找到關鍵變數,是在噪音中提煉本質判斷。在AI時代,想明白本身就是一種稀缺能力。因為資訊極度過剩,結論卻極度匱乏;工具觸手可及,判斷卻愈發稀缺。三、你能清晰表達出來的東西,才能交給大模型去幹大模型並不理解意圖,它理解的是指令。而指令的質量,完全取決於表達的清晰度。模糊的目標,只會得到泛泛的結果不完整的約束,只會帶來不可控的輸出缺乏結構的描述,只會放大不確定性因此,一個極其重要卻常被忽視的事實是:大模型並不會削弱表達能力的重要性,反而將其放大到了前所未有的高度。只有當你:能清晰描述問題邊界能明確表達目標與約束能結構化地拆解任務你才真正具備讓AI為你工作的能力。從這個意義上講,表達力正在成為人類與大模型之間最關鍵的介面能力。四、未來的人類角色:負責思考與表達,把執行交給AI當執行成本趨近於零,人類的核心角色將發生遷移:人類負責提出問題人類負責做價值判斷人類負責建構認知框架人類負責表達目標與方向而:推演方案生成內容反覆試錯大規模執行將越來越多地交由大模型完成。這不是人類能力的退化,而是一種能力層級的躍遷。人類從操作者,轉向設計者和判斷者。五、AI時代,真正的競爭發生在思考深度與表達清晰度上在AI高度普及的未來世界裡,真正稀缺的,不是資訊,不是算力,也不是技能本身,而是:能在複雜系統中做出深邃思考的人能將複雜思想清晰表達出來的人能用語言與結構駕馭智能系統的人思考力決定你能看到多遠,表達力決定你能調動多大的能力邊界。當執行可以外包給大模型,人類真正的價值,將回歸到最本質的兩件事上:想清楚,以及說明白。 (壹號講獅)
平均每個月虧3億!從智譜招股書,我看到了大模型競爭的殘酷現實
中國大模型第一股終於來了!12月19日,港交所官網顯示,北京大模型企業智譜已通過港交所聆訊,並揭露招股書檔案,正式衝刺港股「大模型第一股」。作為國外大模型領域最炙手可熱的公司,智譜的商業化堪稱「神速」。過去三年,公司收入分別為0.57億元、1.25億元、3.12億元。以收入計算,截至2024年,智譜是中國最大型的獨立通用大模型開發商、中國第二大整體通用大模型開發人員。但收入光鮮背後,也隱藏著大模型競爭最殘酷的一面:過去三年,公司經調整淨虧損分別為0.97億、6.21億以及24.66億元,成長了20倍以上。到了2025年,光是上半年智譜的虧損就高達17.52億元。算下來,平均每個月要虧接近3億。而截至2025年6月,智譜的現金及現金等價物只剩下了25.52億元。以每個月虧損接近3億來算,智譜的現金流只能支撐9個月左右。這或許也是智譜急於上市的原因。某種程度上說,智譜的招股書不只是一次融資資料的揭露,更像是一份產業切片,第一次將中國大模型公司最真實的處境展現在了我們面前。/ 01 / 營收全國第二,過去兩年復合成長130%,從營收成長看,智譜的商業化進度不可謂不快。2022年收入,智譜還只有0.57億元。到2024 年,已成長到3.1億元,復合年增長率超過130%。 2025 年上半年更是狂飆,短短6個月就入帳 1.9 億元,較去年同期成長325%。別小看這個資料,根據智譜招股書的說法,這個規模已經是國內第二大的模型廠商,市佔率達6.6%。結合招股書中以字母代稱的可比公司訊息,矽基君可以較為明確地判斷,A 至D 分別對應科大訊飛、阿里、商湯和百度,也就是說,智譜在收入規模上僅次於科大訊飛。支撐這一成長的,是一套以MaaS 為核心的商業模式。與其說智譜在“賣模型”,不如說它在交付一整套工程化的大模型能力體系。其核心邏輯不在模型參數本身,而是如何讓模型能力穩定地進入真實業務環境。在模型層面,智譜提供了涵蓋語言、多模態、智能體和程式碼等方向的模型矩陣。根據招股書披露,其模型能力不僅涵蓋語言和多模態視訊,還延伸至程式碼模型、GUI 智能體和電腦應用層面,覆蓋廣度明顯高於其他競爭對手。值得一提的是,這裡E、F公司分別指的是OpenAI和Google,這也從側面說明了智譜試圖對標的能力邊界。這些不同規模、不同能力重點的模型,統一納入同一平台。客戶和開發者無需從零判斷技術路線,而是可以直接根據業務需求,在現有模型組合中選擇合適方案。在應用層面,智譜並未把模型當作孤立的API 來販賣,而是圍繞真實業務流程進行設計。具體來說,平台內建的智能體工作區,提供了面向具體場景的範本和解決方案,客戶可以根據具體需求通過模型微調、增量訓練和提示工程,對智能體進行快速定製,而無需建構完整的開發系統。在基礎設施層面,智譜與算力合作夥伴共同設計和適配底層架構,使平台在運算、網路、訓練通訊和推理加速等環節形成統一能力。這套架構支援從約15 億到2300 億參數規模的模型運行,並能夠實現跨雲端、跨晶片的大規模即時部署。同時,這些模型能力也支援配手機、電腦等個人裝置。如果用一句話概括,智譜做的無非就兩件事:一方面負責“造大腦”,另一方面提供讓大腦在現實系統中運行的“腳手架”,也就是智能體與工程體系。在商業交付上,智譜主要透過兩種方式變現:在地化部署和雲端服務。其中,「在地化部署」是智譜最重要的收入來源,營收佔超過80%。在地化部署本質上是一種高度客制化的交付模式。什麼意思呢?中國的銀行、央企、大型製造工廠,往往對資料安全極為敏感,不願意把核心資料傳到公有雲。智譜AI 就把大模型“打包”,直接部署到客戶自己的伺服器裡,幫他們在其內部環境中建構私有的AI大腦和AI工具。這種模式雖然“重”,但客戶付費能力強。2024年,雖然在地化部署的客戶只有123家,遠低於雲端部署的5,457家,但其收入卻佔了公司總營收的84.5%。在合作開展前,智譜會先從資料基礎與應用情境兩方面評估顧客需求​​,包括模型微調與增量訓練所需的資料條件,以及資料安全與合規要求,並據此明確模型將落地於單一或多情境應用,確定對應的模型規模與複雜度。在此基礎上,智譜會制定客制化服務方案,選擇雲端或在地化部署路徑,並透過模型微調、增量訓練和提示工程完成模型自訂。模型上線後,公司再根據客戶回饋,不斷最佳化模型效能。總的來說,智譜試圖在B端建構了一套可落地且規模化複製的商業邏輯:透過真實業務場景的持續使用,形成模型最佳化與應用擴展相互推動的正向循環,從而逐步強化MaaS 平台的競爭力。/ 02 / 平均一個月燒3億,競爭壓力大如果說收入成長展示的是智譜的“速度”,那在招股書裡更刺眼的,其實是另一條曲線——虧損。雖然智譜的收入成長夠快,但還是架不住虧損比成長跑得更快。2022年,公司經調整淨虧損只有0.97億,還不到1個億。到了2023年,調整淨虧損迅速成長到了6.21億元,漲了500%多。更誇張的是,到了去年這數字乾脆成長到了24.66億元。也就是說,在兩年時間裡,智譜的虧損幅度從不到1個億,成長到了24.66億元,成長了超過20倍。到了2025年,光是上半年智譜的虧損就高達17.52億元。算下來,平均每個月要虧接近3億。這無疑大大消耗了智譜的現金流。要知道,截至2025年6月,智譜的現金及現金等價物只剩下了25.52億元。以每個月虧損接近3億來算,智譜的現金流只能支撐9個月左右。這下大家明白智譜為什麼要急著上市了吧。大模型競爭的慘烈以及強度之高,即使是在一級市場已經拿了16輪融資錢的智譜也抗不住了。而這大幅增加的虧損,最主要的來源就是研發費用。2022年,該公司的研發費用為0.84億元,到了2023和2024年,這一數字迅速增長到5.29億元和21.95億元。拆解開來看,這個21.95億的支出絕大部分都用來支付算力了。其中,算力花了15.53億元,佔了總研發支出的70%。對於研發費用的成長,智譜在招股書裡的解釋是:“主要由於我們自2024年初起戰略性加大研發投入,用於加速新一代旗艦級基座模型及多模態智能體的開發與迭代,相應帶動計算服務費用上升。”在矽基君看來,更接近現實的背景是,競爭環境的急劇變化。2025 年初,DeepSeek R1 的快速崛起,對整個模型產業形成了明顯衝擊。幾乎所有主流模型廠商都被迫提速迭代。在R1 發佈不到三個月的時間裡,智譜一口氣開源了6款核心模型。如此高密度的模型發佈,本質上意味著算力、資料和工程資源的集中投入,而這些成本幾乎都會直接反映在研發支出中。除了研發支出,智譜在行銷費用上也花了不少錢。2022-2024年,該公司的行銷費用從1514萬增長到了3.87億元,其中用於廣告和行銷開支的費用就高達2.37億。如果拋開競爭壓力的話,智譜的毛利率其實不算低。2022-2024年,智譜的毛利率分別為54.6%、64.6%及56.3%。這在專案製為收入大頭的公司裡並不多見,尤其還在如此激烈的競爭之下。公司也正在嘗試透過定價策略來改善結構:一方面,根據使用量、效能需求和進階功能,最佳化分層定價,引入更具彈性的方案,以擴大客戶基礎,並對高資源消耗模型設定使用限制,引導高需求客戶選擇高價值方案;另一方面,與高價值客戶協商客制化定價,使價格更能反映客戶獲得的業務價值和服務成本。但相較於定價本身,更根本的問題在於,智譜的商業模式隱含了一個前提:模型能力必須長期維持在產業第一梯隊。而這個前提的成本,正以遠快於收入成長的速度上升。在大模型競爭中,能力領先不再是一次性投入,而是一場持續消耗算力、資本和組織能力的長期戰役。對一家仍處於商業化早期的公司而言,這樣的門檻,已經明顯超越了傳統新創公司的承受區間。這也是目前大模型賽道最殘酷的現實之一。/ 03 / 中國AI落地真實切口:token 消耗激增,付費答案在B端當然,除了具體的業務資料,智譜的招股書裡還透露出幾個更值得關注的產業訊號。第一,AI 的真實價值正在被使用量驗證。一個直接的指標是token 消耗量的變化。 2022 年、2023 年、2024 年12 月以及2025 年6 月,智譜平台的日均token 消耗量分別達到 5 億、21 億、0.2 兆和4.6 兆。短短兩年多時間裡,這項指標幾乎以數量級的速度攀升。無論商業模式如何演進,持續放大的真實呼叫本身,已經說明大模型正在被大量嵌入具體工作和業務流程中。第二,中國AI 的付費重心仍在企業端。招股書資料顯示,2024 年中國大語言模型市場規模約為人民幣53 億元,其中機構客戶貢獻47 億元,個人客戶僅6 億元。展望2030 年,整體市場預計成長至1,011 億元,其中企業級市場規模將達904 億元。這一結構與美國市場形成了鮮明對比。以OpenAI 為例,其當前​​收入中約75% 來自消費者訂閱。這背後反映的不僅是產品形態差異,而是中美兩地在AI商業化路徑上的分化:中國市場更強調組織級效率提升,美國市場則更容易從個人工具切入。第三,智譜再次系統性地揭露了其對AGI 演進路徑的理解。智譜認為,AGI分為以下5個階段:1)在預訓練階段,模型學習理解、生成並使用人類語言進行基本溝通。2)在對齊與推理階段,模型進一步與人類意圖對齊,具備推理與規劃能力,同時提升安全性、降低幻覺,並實現語言能力與影像、視訊、語音及行動能力的協同。3)在自主學習階段,模型透過自我評估、自我反思與沉思機制,從自身的推理過程與行為結果持續改善能力。4)在自我認知階段,模型在較少或無需人工監督的情況下,透過對自身行為和推理結果的持續觀察與分析,逐步形成穩定的內部表徵和決策偏好。5)在意識智能階段,模型能夠對自身內在狀態及外在環境進行更有系統的感知與建模,展現出更高層次的環境理解與自我調節能力。目前,智譜推出的具備反思能力的智能體AutoGLM-Rumination,已進入其定義的「自主學習階段」。/ 04 / 總結回到整體來看,智譜的招股書不只是一次融資材料的揭露,更像是一份產業切片。一方面,它展示了大模型商業化正在加速落地,真實使用量和企業付費意願都在持續放大;另一方面,它也清晰地暴露出這條賽道的殘酷現實——能力領先需要持續、重資本投入,而競爭強度正在迅速抬高門檻。在這樣的環境下,智譜既是受益者,也是承壓者。這或許正是當前中國大模型公司最真實的處境。 (硅基觀察Pro)
亞馬遜重組AI團隊,發力大模型、晶片和量子計算研究,CEO稱“公司進入轉折點”
亞馬遜周三宣佈重組人工智慧相關團隊,成立新的業務單元,並任命來自雲端運算部門AWS的高管Peter DeSantis負責。新組織將整合亞馬遜AGI團隊、晶片製造部門以及量子計算研究業務。分析稱,此舉表明亞馬遜希望打造類似ChatGPT那樣的前沿、多用途人工智慧工具。亞馬遜(Amazon)周三宣佈重組其人工智慧(AI)項目相關團隊,並任命來自公司雲端運算部門的一位高層負責人,負責一個新成立的業務單元。亞馬遜首席執行長安迪·賈西(Andy Jassy)周三宣佈,彼得·德桑蒂斯(Peter DeSantis)將領導這一新團隊。新的組織架構將整合亞馬遜的通用人工智慧(Artificial General Intelligence,AGI)團隊,該團隊負責公司的Nova品牌AI模型以及語音助手Alexa的“數字大腦”,同時還將併入亞馬遜的晶片製造部門和量子計算研究業務。賈西表示:“我相信,我們的多項新技術正處在一個關鍵轉折的點,這些技術將在未來很大程度上塑造客戶體驗。”媒體稱,亞馬遜雲服務(AWS)是全球最大的計算能力和資料儲存租賃服務提供商,但在AI開發者領域,AWS未能複製其在雲端運算市場的主導地位,正面臨來自微軟、Google以及眾多初創公司的激烈競爭。據報導,在OpenAI於2022年底推出ChatGPT之後的幾個月裡,亞馬遜將此前分散在Alexa團隊和AWS之間的AI開發工作集中,統一歸入一個組織。而這次調整表明,亞馬遜希望打造類似ChatGPT那樣的前沿、多用途人工智慧工具。周三宣佈的最新調整,進一步強化了該團隊的實力,納入了安納普爾納實驗室(Annapurna Labs)。這是一家亞馬遜於2015年收購的初創公司,也是亞馬遜開發通用晶片和面向AI硬體的重要基礎。在此之前,德桑蒂斯曾擔任基礎雲端運算業務高級副總裁,負責AWS大部分工程團隊。在新職位上,他將直接向賈西匯報。賈西表示,德桑蒂斯在“解決技術可行性邊界上的難題”方面有著出色的過往記錄。賈西還表示,現任AGI團隊負責人、也是長期領導Alexa語音科學團隊的羅希特·普拉薩德(Rohit Prasad),將於今年年底離開亞馬遜。此外,皮特·阿比爾(Pieter Abbeel)將在亞馬遜負責基礎AI模型的開發團隊。阿比爾於去年加入亞馬遜,當時亞馬遜收購了機器人軟體公司Covariant。 (硬AI)
騰訊“坐不住”了,官宣大牛負責AI
騰訊今日對外確認,姚順雨(Vinces Yao)已正式出任騰訊“CEO/總裁辦公室”首席AI科學家,直接向騰訊總裁劉熾平匯報。在此角色之外,他兼任騰訊AI基礎設施(AI Infra)與大語言模型部負責人,並在大模型組織架構調整中承擔核心職責。此任命標誌著騰訊在AI研發體系的戰略聚焦。有媒體報導,騰訊近期完成了一次組織調整,正式新成立AI Infra部、AI Data部、資料計算平台部。姚順雨畢業於國內頂尖的清華“姚班”電腦科學精英班,後在美國普林斯頓大學獲得電腦科學博士學位,並在機器學習與大規模語言模型研究領域積累深厚科研成果。他曾擔任OpenAI研究員,參與智能體(Agent)與大規模AI系統設計的前沿工作。這樣的學術與工程交融背景,是其被騰訊重用的關鍵原因。題外話,據傳當年清華同一屆有三位同學都叫“姚順雨/宇”!2019年他們一起畢業:一個是本文所指的主角,清華姚班的AI大神,本科rap社創始人,後來普林斯頓博士畢業進OpenAI搞大模型,最近去了騰訊;一個是物理天才,本科拿特獎在頂刊發論文,後來跑去Stanford念PhD,又加入Anthropic搞AI,剛離職加入 Google;還有一個是人文學院的才女,雙學位加身。這名字是不是和“堯舜禹”有大神般的玄學?騰訊為何“坐不住”了:大模型競賽加速騰訊近期發佈了混元大模型最新版本Tencent HY 2.0,採用混合專家(MoE)架構、支援超長上下文等領先指標,並已接入公司內多項產品與雲服務。然而在AI領域,競爭持續加劇:友商壓力:阿里巴巴旗下的通義千問(Qwen系列)持續推出高規格模型,在中國市場與國際競賽中都有顯著存在感。即便談到應用場景,豆包的體驗口碑也越來越不錯,加上千問和靈光的騰空而出,當它們的下載數量快速增長超過千萬等級時,騰訊的各大產品未來是否有足夠的“網路效應”都不好說。就連小米也挖了“天才少女”羅福莉(當然,羅福莉本人反對網路神化她)。國際對手:Google等發佈的Gemini-系列模型(例如Gemini 3 Pro)展示了在推理能力與多模態能力方面的提升,引發全球AI開發者關注並對中國AI廠商提出競爭壓力。在這樣的背景下,騰訊不能僅靠應用場景護城河(如微信生態、QQ、遊戲等),“基礎模型能力”的競爭已是核心戰場。因此通過引進頂尖研究人才來強化模型底層架構與演算法研究,是一次戰略升級訊號。這也是對市場競爭壓力與AI生態擴展趨勢的直接回應。姚順雨理念與對騰訊AI實力的潛在影響雖然公開報導中較少具體引言,但從其在OpenAI的工作看:他是“語言智能體(Agent)”研究與執行框架的實踐者,這類框架強調模型在真實世界環境中“感知—推理—行動”的能力。這類能力正是下一代AI產品差異化競爭的關鍵——不只是回答問題,而是驅動真實複雜任務執行。作為首席AI科學家,姚順雨的核心理念可概括為:提升模型在實際環境中的智能執行能力與可擴展性,從基礎演算法研究到AI產品落地的全鏈條能力強化。從OpenAI經驗來看,他強調智能體驅動的決策推理與多工泛化能力,這將有助騰訊從工程實現者向科研與技術驅動者並進。預計這種轉型將帶來:更具通用智能與大規模推理能力的大模型架構更高效的AI訓練與推理基礎設施在未來騰訊各大產品線中實現更深度AI功能融合如果進展順利,底層AI的能力將惠及騰訊旗下所有的業務線,特別是微信這樣的超級app,反過來說,騰訊也不得不快速行動了,只靠短影片已經不夠撐起微信未來的想像力了。市場反應與騰訊股價表現截至2025年12月17日收盤,騰訊控股(0700.HK)股價約 605.00 港元,較前一交易日上漲約 1.4% 左右。該股在過去一周內經歷小幅波動,但整體維持在 590 —— 615 港元區間震盪,並明顯高於年初低點,反映投資者對核心業務持續增長及AI戰略佈局的謹慎樂觀態度。歷史資料顯示騰訊股價在過去一個月雖有調整,但並未出現明顯下跌趨勢。AI競爭加速與中國科技股回暖預期是推動騰訊股價表現的潛在因素之一。同時,技術與產品發展進度、政策環境與宏觀經濟走勢均將繼續影響後續股價走勢。近期有海外資金持續流入中國AI相關類股,亦為市場提供支撐。小結據The Information近期報導,騰訊正在高價搶奪字節跳動的AI團隊,在過去數月裡,以加倍薪資積極挖角字節旗下的頂尖AI人才。根據36氪報導,《智能湧現》瞭解到,如今領導AI Infra部、大語言模型部負責人的姚順雨在加入騰訊後,已經幫助混元招募到了更多的人才,如字節、阿里、AI六小虎(Kimi、MiniMax、智譜、階躍星辰、百川、零一萬物)中的數位核心員工。騰訊本次對AI人才與研發架構的戰略調整,透露出它在AI基礎技術競爭中的“坐不住感”。從聚焦場景生態到強化底層智能協議與模型能力,騰訊正試圖在新一輪AI競賽中搶佔更有利位置。而姚順雨作為“連結科研與產品實現”的關鍵人物,其理念與背景或將為騰訊AI實力帶來實質性提升。股價在此消息刺激下的小幅走強,也反映出市場對騰訊AI戰略潛力的認可。 (首席商業評論)